Field of Science

Why is H. influenzae's CRP so feeble?

One discovery from the grad student's work on Sxy and CRP is that the H. influenzae CRP protein binds CRP sites much less strongly (with much lower affinity) than the E. coli CRP protein does. This is a bit surprising. The two proteins have quite similar sequences, and all the amino acid residues expected to directly contact the DNA are identical.

He's going to contact a lab that has done extensive structural analysis of E. coli CRP, to see how difficult it would be to see how well H. influenzae CRP will superimpose on the E. coli structure. One possibility he suggested is that the dimerization domain of H. influenzae CRP could be weak. This would cause the protein to spend less time assembled into the dimers that most readily bind DNA.

Until now we (at least I) had thought that the affinity of CRP for different genes was determined by how well the gene's CRP site matched the protein's requirements for binding. This would have been optimized for each gene by natural selection acting on mutations in its CRP site. But now I'm wondering whether natural selection has also acted differently on E. coli and H. influenzae CRP proteins to fine tune their affinity for all the sites in their respective genomes.

H. influenzae has only about 40% as many genes as E. coli, and about 40% as many CRP sites regulating them. But I can't think of any way that would favour a 100-fold difference in CRP affinity for the same CRP site, which is what the grad student has found.

The assays were done under exactly the same conditions, but this doesn't ensure that the proteins responded identically to these conditions. I wonder if the binding conditions used for these measurements (optimized for E. coli CRP) might be unsuitable for H. influenzae CRP.

4 comments:

  1. I think it has to do with a discussion we had earlier this year, that H. influenzae is "on its way" to having a reduced genome. There probably isn't as much purifying selection acting on CRP in Hin, due to fewer genes in its regulon for example, and therefore deleterious mutations are not purged as readily as they are in E. coli.

    ReplyDelete
  2. I'm assuming from the way you describe things that these are in vitro affinity measurements -- is that correct?

    What happens if you replace E.coli CRP with H.influenzae CRP? Does it change when catabolite repression turns on & off?

    ReplyDelete
  3. Heather, Andrew agrees with your idea.

    Keith, yes, the affinity measurements were done using band-shifts in vitro. We knwo that E. coli CRP works fine in H. influenzae, but we haven't yet looked at kinetics of induction of CRP-dependent genes. One simple experiment would be to find out how much cAMP is needed to induce the genes when the different CRPs are present.

    ReplyDelete
  4. Did you guys try an overexpression of yccR(sxy) and see how it would effect E. coli's comF(yhgH) mRNA levels? Because yrfD is induced and it got two CRP-S sites, why not comF? Also, how about indution of other genes in the yrfD operon suc as yrfC, yrfB, yrfA and hofQ? However, I expected to be induced as well but would it be at the same level as yrfD mRNA transcripts?

    ReplyDelete

Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS