I haven't done a P1 transduction (or any E. coli genetics) for 20 years. But I'm being sent E. coli strains carrying chromosomal lacZ fusions and will need to move these fusions into different genetic backgrounds. This is stuff I did in grad school and I'm delighted to be doing it again.
P1 is a phage (bacteria virus). Particles of phage inject their DNA into E. coli cells, where the DNA is replicated and instructs the cell to make lots of phage proteins. Then the phage proteins self-assemble into phage particles that each fill themselves with a phage DNA, and other phage-encoded proteins cause the cell to lyse (burst open), freeing the new phage to go infect more cells.
What makes P1 useful for strain construction is its tendency to make the mistake of filling itself with a fragment of E. coli DNA rather than P1 DNA. The particles that do this still go on to inject their DNA into new cells, but this DNA (of course) doesn't make new phage or burst the cell. Instead it often recombines with the chromosome of this cell. If the original cell (the 'donor') and the new cell (the 'recipient') had different versions (alleles) of a gene, the donor cell's allele will sometimes get recombined into the recipient cell. The fragment of DNA that's transferred is about 100 genes long, so even big differences (presence or absence of whole genes) can be transferred.
Say strain A has an gene that I want to put into strain B. I first replicate P1 with strain A as host. This produces about 5 ml of a phage 'lysate', usually containing about 10^10 Pi phage per ml. Most of these are normal but some have DNA from strain A. I then infect strain B with these phage, using fewer phage than I have bacteria (I think), so most bacteria get infected by only a single phage. Most of these are infected by normal phage, and go on to lyse and release new phage. To prevent these phage from killing other cell, after the first cells have had time to inject their DNA into their hosts (10 minutes?) I add some citrate, which binds up the calcium the phage need to attach to new cells. Then I put the strain B cells onto agar plates with medium that only cells with the strain A gene can grow on, and I leave them in the incubator overnight. If I haven't messed up, the next day the plates will have lots of strain B colonies with the desired gene.
Lovely pure genetics. No enzymes, no PCR, no kits, and the cells do all the work.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
Don't tell me they found Tyrannosaurus rex meat again!2 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
-
Course Corrections4 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
2 comments:
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS
Subscribe to:
Post Comments (Atom)
Can you use other phage that are specific for E. coli too (or maybe they don't have to be species specific)? I am wondering why it is P1.
ReplyDeleteP1 has a high frequency of packaging chromosomal DNA (about 1% of virions I think), it packages big fragments (100kb I think) and it's reasonably non-specific about different parts of the genome.
ReplyDeleteI don't know of a better generalized transducing phage for E. coli. The Salmonella phage P22 has a much higher frequency of transducing particles (~50%) but doesn't work in E. coli.