While I've been doing other things a collaborator has been working hard on a comparative genomics project that will tell us how much impact uptake signal sequences (USS) have on gene function.
Reminder: USS are short sequence motifs (the longest are ~30bp) present in many copies in the genomes of naturally transformable bacteria, probably because the cells preferentially take up DNA fragments containing the motif. Most of the USS in the Haemophilus influenzae genome are in coding sequences, and we want to find out whether their presence forces genes to specify sub-optimal amino acids at positions encoded by USS.
This analysis is testing the effect of USS by comparing the amino acid sequences of proteins with and without USS. For each H. influenzae gene with one or more USSs, we first find homologous protein sequences from at least three genomes with no USS. We compare these three protein sequences with each other (that's three no-USS comparison scores), to get a measure of how strongly selection acts on the protein, especially on the segment that in H. influenzae is specified by a USS. Then we compare each of the three with the H. influenzae sequence (that's three +USS comparison scores).
Then we compare the mean no-USS score with the mean +USS score; if the scores are similar then we conclude that the USS doesn't significantly constrain the protein's function. There's a lot of random variation, so we do this for every USS-encoded gene in the the genome and then plot each pair of scores as a point on a scatter-plot. Points that fall on a diagonal line represent genes whose USSs don't constrain them, and points that fall below the line represent genes whose USSs may be causing problems.
We're not interested in specific genes, but in the general picture - we want to know whether, on average, USSs cause problems or not. A preliminary analysis done years ago suggested they don't, but the answer from this new improved analysis will be interesting in any case.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
RFK Jr. is not a serious person. Don't take him seriously.1 month ago in Genomics, Medicine, and Pseudoscience
-
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
-
What I read 20194 years ago in Angry by Choice
-
-
-
Histological Evidence of Trauma in Dicynodont Tusks6 years ago in Chinleana
-
Posted: July 21, 2018 at 03:03PM6 years ago in Field Notes
-
Why doesn't all the GTA get taken up?6 years ago in RRResearch
-
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
-
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
Re-Blog: June Was 6th Warmest Globally10 years ago in The View from a Microbiologist
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
Analyzing the effect of USS on the coding function of genes
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS