My tests to find out why the Neisseria Gibbs searches found so many (poorlymatched) motif sites indicate that searches using a short expected motif (e.g. the Neisseria 12bp motif) give a lot more sites than searches using a long expected motif (e.g. the Haemphilus 22bp one). This means that my original strategy of specifying an expected number of 1.5 X the observed number of 'perfect' cores has given misleading results.
At first I feared that I would have to do all the searches over, and analyze their new output in some much-more-laborious way. But I think I've come up with a simple new method that's also good science.
Each site the Gibbs search finds is assigned a score, reflecting how well it matches the motif pattern the search has found. Until now I've just used all the sites, regardless of their scores. But now I'm going to take the output from each run and sort the sites by their scores. Then I'll keep enough of the high-scoring sites to give me 1.5 X the number of perfect cores, and discard all the lower scoring sites. Most of the runs I've done gave at least this many sites, so I shouldn't need to redo many searches.
This strategy will produce a much more comparable set of analyses, so I'll be able to fairly compare the results for different genomes.
Before I do the sorting, I'll combine the results of a forward and a reverse search, so the results will reflect both strands of the genome. But I'll need to first make sure I'm using a pair of searches that both settled on the same 'forward' orientation and exactly the same position of the motif. This is mainly an issue for the Pasteurellaceae searches, where some searches have the core starting at position 1 of the motif and some have it starting at position 2 or 3. If I can't find suitable pairs I'll need to do more searches.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
The architecture of Pi Mensae2 weeks ago in Doc Madhattan
-
The Hayflick Limit: why humans can't live forever4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections3 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?3 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey6 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens9 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS