Yesterday I found time to sit down with my colleague who works on the 'gene transfer agent' (GTA) of Rhodobacter capsulatus. This helped me sort out a few things that are known about this entity, and a few things that aren't.
Is GTA derived from phage? Almost certainly. My colleague's lab's recent work has shown that some of the genes needed for GTA production are homologs of known phage genes. Old work from Barry Mrrs' group also showed that supernatants of GTA-producing cultures contain particles that look like tiny tailed phages. However, no GTA- control cultures were examined, and these phage-like particles could be produced from a defective prophage unrelated to GTA.
GTA particles contain chromosomal DNA fragments about 4.5kb, but nothing is known about how the DNA comes to be packaged in these particles. This information is critical to understanding how evolutionary processes act on GTA.
Old Cot-curve and restriction analyses were consistent with the fragments being derived from random positions in the chromosome, but the resolution is very poor. The issue could be nicely resolved by isolating DNA from the particles and hybridizing it to Affymetrix chips. Unfortunately my colleague says that getting sufficient GTA particles is quite difficult, as yields are both very low and not very predictable. An attempt to find out whether the ends of the fragments are blunt or staggered was unsuccessful.
From an evolutionary perspective, the most critical missing pieces of information are probably whether GTA is always (or often) accompanied by the death of the producing cell, and whether genes allowing GTA production can be transferred by GTA. That's because, if the genes are anything more than accidents of evolutionary history, they must either enhance the fitness of the cells they are in or spread into new cells faster than they kill their present cells.
If cells can produce GTA without dying, they must have a way to pass the particles out through the cell membranes without destroying them. Some filamentous phages can be secreted by living cells, but I think the tailed phages GTA is thought to resemble escape only by lysing their hosts. The amounts of GTA produced are sufficiently small that this might entail death of only a tiny fraction of the culture.
And if GTA does kill its cells on the way out, GTA could persist of evolutionary time only if it either spread between cells like an infectious agent or greatly increased the fitness of its close kin. Neither of these seem very likely, but I'll post more about this later.
I've now got some old papers to read.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
RFK Jr. is not a serious person. Don't take him seriously.1 month ago in Genomics, Medicine, and Pseudoscience
-
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
-
What I read 20194 years ago in Angry by Choice
-
-
-
Histological Evidence of Trauma in Dicynodont Tusks6 years ago in Chinleana
-
Posted: July 21, 2018 at 03:03PM6 years ago in Field Notes
-
Why doesn't all the GTA get taken up?6 years ago in RRResearch
-
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
-
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
Re-Blog: June Was 6th Warmest Globally10 years ago in The View from a Microbiologist
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
1 comment:
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS
Subscribe to:
Post Comments (Atom)
I had never heard of GTA until your blog - it sounds interesting. Could a third possibility, in addition to the ones you mention, be that GTA encodes some sort of suicide vector? At this stage it seems it isn't known whether cells with or without the factor are the ones that appear to lyse.
ReplyDeleteLindsay Wilson