The undergraduate is working at home, making improvements to the use-ability of our Perl model of USS evolution, while I'm here doing some test runs with the slightly unwieldy version we have now.
This is the version that incorporates the first major improvement. Instead of a single "best-score" fragment recombining with the genome in each cycle, each of the scored fragments can recombine with the genome, with a probability proportional to its score. In principle this should allow the recombination to introduce new USS-like sequences faster than they are lost from the genome by mutation. But in practice the USS-score of the genome drifts up and down but doesn't consistently increase.
"When in doubt, run more controls."
So I've made a modified version of this program that has the same feature as our PositiveControl.pl program (it's name is PositiveControlv2.pl). Instead of mutating random fragments and recombining them back into the genome, it replaces their sequences with perfect USS cores. Of course the fragments need to be the same length as the core.
OK, this positive control tells me that the program is doing what it should. 10 fragments are recombining into the genome each cycle, which is what should happen to the 10 fragments the program considers each generation. Now I'll test PositiveControlv3, which puts in an imperfect USS instead of a perfect one. If the program is doing what I want, on average 8 of the 10 fragments will recombine each generation, and the genome score will not get as high as with perfect USSs.
OK, that worked too. So I think the problem may not be with the implementation of the code, but with the design of this version of the model. Back to the drawing board... (literally, back to the big whiteboard in the hall outside my office).
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
From Valley Forge to the Lab: Parallels between Washington's Maneuvers and Drug Development4 weeks ago in The Curious Wavefunction
-
Political pollsters are pretending they know what's happening. They don't.4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections5 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS