We have lots of hypotheses, Lord knows, but I've just read the NIH advice for preparing a strong proposal, and the first thing they emphasize is the importance of starting with a clear hypothesis that the proposed work will test. Of course at one level I know this, but at another level I've been ignoring it. The series of experiments I would like to propose fit together nicely, building a coherent picture of the limits to recombination at both molecular and population levels, but it's not obvious to me that they test a specific hypothesis.
I can come up with a hypothesis for the first parts (the ones covered by the current post-doc's NIH fellowship proposal). "Every stage of transformational recombination is limited by sequence biases." This hypothesis might well be false - we only know of biases at two steps: DNA uptake and mismatch repair. But it provides a clear explicit framework for finding out where and what the biases are.
But I would like to extend the research to include the biases due to the differences in different isolates. Well, that's a way of saying it that sort-of fits the hypothesis but doesn't really capture what I want to propose. Instead I should first describe what I would like to propose, and then try to find a way to describe it that can be part of a unified hypothesis.
I would like to propose to find out the molecular reasons why different isolates of H. influenzae differ so much in their ability to transform. This should be fairly straightforward, given the molecular and genetic/genomic tools we have. We can also try to estimate how long these strains have had their specific transformation phenotypes - did a very recent ancestor get a mutation (or recombination!) that inactivated a competence/transformation gene, or is it descended from a long lineage of non-competent ancestors.
But I would also like to find out how different are the recombination histories of strains that can and can't transform - looking not just at the individual sequences they have acquired, replaced, or lost, but at the pattern underlying these events. Do strains that don't transform at all in the lab have a history of greatly reduced recombination, relative to strains that transform very well in the lab?
I don't know how do-able this is. If we get genome sequences of enough strains, can we build up a detailed picture of their recombination histories? The previous post-doc used a program called Mauve to identify recombination tracts...
I also don't know to what extent this analysis will be facilitated by the information we'll get from the first parts described above. We'll first build up a complete picture of the relationship between (i) a pair of donor and recipient genomes and (ii) the recombinant genomes that result from DNA uptake. (If resources permit we can do more than one pair of genomes.) Then we try to use this knowledge to infer the recombinational histories of other genomes. Is there a hypothesis in there? Maybe the hypothesis is that this will be possible. We could hypothesize that "Understanding the limits to transformational recombination in lab cultures will let us identify the recombination histories of natural isolates."
But as science this is what I consider a 'pseudo-hypothesis'. It's not a hypothesis about the nature of reality, but a hypothesis about the nature of our abilities. How about "The limits to transformational recombination in lab cultures explain the recombination histories of natural isolates."
Hmm, if that's our hypothesis then maybe this proposal does belong in the Evolution of Infections Disease program after all, and not in the Prokaryotic Cell Growth, Differentiation and Adaptation program. I think I'll handle this question by putting together a decent summary (once we have a single hypothesis) and asking both Program Directors where they think it belongs.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
RFK Jr. is not a serious person. Don't take him seriously.1 month ago in Genomics, Medicine, and Pseudoscience
-
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
-
What I read 20194 years ago in Angry by Choice
-
-
-
Histological Evidence of Trauma in Dicynodont Tusks6 years ago in Chinleana
-
Posted: July 21, 2018 at 03:03PM6 years ago in Field Notes
-
Why doesn't all the GTA get taken up?6 years ago in RRResearch
-
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
-
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
Re-Blog: June Was 6th Warmest Globally10 years ago in The View from a Microbiologist
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS