I'm (finally) starting an experiment. This is the test of whether cells can take up intact closed circular plasmid DNA. The original experiment (Kahn et al 1983 - pdf here - compare lanes A and G of Fig. 3) used plasmids that had been cut, labeled with 32-P, and religated; the religation trapped some supercoils, allowing the gels to show that supercoiling was preserved in the DNA that had been taken up. Our new 32-P won't arrive until sometime next week, so I'm going to do a practice run using cold DNA. If I'm lucky, the cells will take up enough that I can see it in a gel.
The post-doc showed me the stock of the plasmid I'll use (pUSS-1, left by a previous post-doc). So this afternoon I'm just running a quick gel to check the state of this DNA. And pouring some plates to streak out the wildtype and rec-2 cells I'll be using. If the DNA is supercoiled I'll try it out tomorrow on some wildtype competent cells I have frozen.
We've also ordered the tester-kit of four kinds of streptavidin-coated magnetic beads with different surface properties. They're much bigger than I wanted, but I figure I can at least use them to find out whether H. influenzae cells stick to any of (or all of?) these beads in the absence of DNA. If they do, the planned experiments may not work.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
From Valley Forge to the Lab: Parallels between Washington's Maneuvers and Drug Development4 weeks ago in The Curious Wavefunction
-
Political pollsters are pretending they know what's happening. They don't.4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections5 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
2 comments:
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS
Subscribe to:
Post Comments (Atom)
What kinds of surface properties?
ReplyDeleteFrom our work a few years ago there was no binding between the cells and any of the beads we had at the time (streptavidin, carboxy, G-protein, ...), so I'd naively guess you'll find the same thing (which now will be the _good_ result!).
That's good to know (be reminded off). But these are magnetic beads, and I have no idea what their surface properties might be (except for the streptavidin). I don't suppose you know of any sources of tinier beads with streptavidin or another coupling molecule...
ReplyDelete