The plan is to have a new kind of brainstorming session on Sunday morning, with faculty or senior post-docs taking 3-5 minutes to describe a 'dream research question' that they would love to answer if there were no constraints on time, money or personnel. The rest of the attendees will be assigned to teams for each question (randomly with respect to expertise), and will have an hour to come up with a research program. Then each group will present their program (in a few minutes) and we'll all vote on who gets the prize.
So what should my dream question be? I'm leaning towards wanting to understand the organism-level ecology of a single bacterium. What features matter to it, minute to minute and day to day? What is available, and what is limiting? The difficulty here is scale - we are so big that we can't easily imagine what life is like at this scale. See for example Life at Low Reynolds Number by E. M.Purcell (this link is to a PDF). One problem in using this question for this session is that it isn't a single question but a whole world of ecology. Another is that I suspect what's needed is miniaturization skills, and none of us are likely to know anything about that.
Maybe we could do a "How has selection acted?" question. I would want to take the participants away from the more common "How might selection have acted?" and "How can selection act?" questions to focus on identifying what the real selective forces were.
Or maybe "What was the genome of the last universal ancestor?" The problem with this question is that it is probably not answerable at all, regardless of how much time or money or people are thrown at it.
I think I'd better keep thinking...
------------------------------------------------
I also signed up to do a poster about uptake sequence evolution. I'm a glutton for work.
Later: Maybe I could reduce my first idea to a more manageable question, asking about the components of H. influenzae's natural microenvironment that are relevant to competence. How much DNA do cells encounter? What's are the sources of this DNA? How competent are the cells (how much DNA are they able to take up)? What do they do with the DNA they take up?
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS