Yesterday I talked to Tom Silhavy about the periplasmic ATP-dependent DNA ligase that's co-induced with H. influenzae DNA-uptake genes (see old blog post here). He hadn't heard of this and was adamant that there is no ATP in the periplasm. So I did some more poking around.
I found papers about bacterial ATP-dependent ligases that function in 'non-homologous end joining' (NHEJ) reactions - these serve as last-resort repair mechanisms for double-strand DNA breaks that can't find a homologous template to use for repair. I emailed the author of a review, asking if the H. influenzae ligase belonged in this category. (He turned out to also be the person who had done the biochemical characterization of the H. influenzae ligase!)
He said that H. influenzae doesn't have the other NHEJ genes Ku and LigD, so it probably can't do NHEJ. I suspect the H. influenzae protein is in a different category of ligase, because a BLAST search with the H. influenzae ligase doesn't find known NHEJ ligases.
He also asked why I think it's targeted to the periplasm. At first I thought he meant, what do I think is the reason it's target to the periplasm, so I explained that I don't know. But then I realized he might be asking what is the reason I think it's targeted to the periplasm. I couldn't remember so I looked at it and its homologs using TIGR's HMM (hidden Markov model) location analysis function - this says that the H. influenzae protein and the four homologs I checked (Neisseria, Campylobacter, Shewanella and Thiomicrosomethingorother) all have a high probability of being periplasmic, with a single strong transmembrane domain close to the N-terminus. Tim VanWagoner, who also worked on the H. influenzae gene, also wrote that its Vibrio homolog is predicted to be periplasmic. Tom Silhavy had wondered if the apparent signal sequence might be an annotation error (wrong start site?), but this is very unlikely to be the case for all the homologs, so the odds are very high that these really are periplasmic.
I mentioned to Tom my idea that the ligase might be exported to the periplasm with an ATP already bound (the purified protein has its ATP covalently bound, ready for action). He said that, if that were the case, the protein would have to be exported by the Tat (twin argine translocation)system, because that's the only export system that can handle folded proteins. Luckily there's now a TatFind server, so I pasted in the various protein sequences, all of which had no recognizable TAT site in their first 35 aas.
How peculiar... We must be overlooking something important...
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
RFK Jr. is not a serious person. Don't take him seriously.1 month ago in Genomics, Medicine, and Pseudoscience
-
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
-
What I read 20194 years ago in Angry by Choice
-
-
-
Histological Evidence of Trauma in Dicynodont Tusks6 years ago in Chinleana
-
Posted: July 21, 2018 at 03:03PM6 years ago in Field Notes
-
Why doesn't all the GTA get taken up?6 years ago in RRResearch
-
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
-
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
Re-Blog: June Was 6th Warmest Globally10 years ago in The View from a Microbiologist
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS