I've been running a lot of simulations to confirm the preliminary conclusion that mutation rate doesn't change the equilibrium uptake sequence score of our simulated genomes.
These runs all used a 20 kb random-sequence 'genome' and our simple high-bias uptake matrix. Each cycle recombined 100 fragments of 100 bp each - that's half of the genome. And the bias decreased by a factor of 0.75 for each step of the cycle that didn't give enough recombination. I ran three replicates with mutation rate = 0.01, three with rate = 0.001, and 4 with rate 0.0001, each for 10,000 cycles.
Results: All three rates are indeed giving similar equilibrium scores. Each point in the graphs to the left shows the mean scores over the interval since the previous point - that's why the scatter gets less as the points get farther apart. I've calculated the means and standard devations for each rate, but the error bars are just as big as you would expect from the graphs.
As expected, the time to equilibrium depends on the mutation rate, and the noise is highest for the lowest rate. The lowest rate runs hadn't really reached equilibrium after the 10,000 cycles, so I've taken the final sequences these runs produced and used them to initiate new 10,000-cycle runs, to give results for 20,000 cycles. These aren't finished yet, but they do define an equilibrium in the same range as for the higher-rate runs.
Now that these runs have established that mutation rate doesn't have a (big) effect on outcome, we can discuss the results the former post-doc obtained using a mutation rate of 0.001 and a genome size of 200,000bp. This larger genome size dramaticaly decreases the noise in the runs, in the same way that the higher mutation rate does (compare µ=0.001 and µ=0.01 in the graph), giving us more confidence in the equilibrium scores we determine.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
From Valley Forge to the Lab: Parallels between Washington's Maneuvers and Drug Development4 weeks ago in The Curious Wavefunction
-
Political pollsters are pretending they know what's happening. They don't.4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections5 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS