(If the damned thing takes much longer we're going to have to ask the Editor for an extension!)
It's my fault - I'm stalled at fixing up the Discussion.
The problematic reviewer felt that the model didn't make testable predictions, so I wanted to include a brief discussion of how it could be used to evaluate more complex hypotheses about uptake sequence evolution. Unfortunately, a proper test that includes selection will require the model to follow a population of cells or genomes, rather than a single focal genome. Such a model would necessarily be more complicated than ours, and if it was set up like ours the run times might be prohibitively long. (Of course a clever programmer might find ways to streamline it without losing scientific relevance.)
But I thought of a simple test of whether uptake sequences accumulate near to positions that are under fitness selection in the diverging sibs of the focal genome. Modifying the program to do this took only about 12 lines of code, but getting this code to work properly took me most of a day (spent chasing curly brackets and finding out the correct way to use the Perl 'substr' function).
This new version of the program includes selection at position 5000 of the evolving genome. As before, each DNA fragment in the environment is first scored for sequences matching the uptake motif, and the resulting score determines its probability of recombining with the focal genome. But now, if the fragment overlaps position 5000, it is also checked for its base at that position. Fragments with an A at position 5000 keep their original uptake-sequence score for the recombination step, but fragments with the other bases have their scores reduced by a factor of 0.7, 0.4 or 0.1 (for G, C and T respectively). This is intended to simulate poor survival of cells with these bases. If the focal genome has an A it will have a near-normal recombination around position 5000 (except for the 1/100 fragments that carry mutations to less favoured bases), but if it has one of the other bases it will have reduced recombination except for the higher recombination of fragments carrying mutations there). Recurrent mutation at position 5000 (in the focal genome and in the divergent fragments) may create a recurrent benefit of recombination, and if uptake sequences promote beneficial recombination, might select for uptake sequences close to position 5000. On the other hand, if recombination more often brings in harmful mutations, uptake sequences close to the selected position might be selected against.
So I examined the final locations of uptake sequences in genomes from a bunch of runs that started either with 10 kb random-sequence genomes or with 20 kb genomes pre-seeded with uptake sequences (one very close to position 5000). In the random-sequence genomes there were just as many uptake sequences around position 5000 as anywhere else, and in the pre-seeded genomes the uptake sequence at position 4982 was no more and no less stable than any other uptake sequence.
This isn't a very good test, in lots of ways (in fact it's quite awful), but I think it will show the Editor that the model is indeed testable, and that we have made a reasonable effort to satisfy the reviewer. In the manuscript's Discussion I'll describe it in less detail than I have above, and I won't present any data ("Redfield, unpublished"). And I'll explain that a proper test that incorporates selection for beneficial alleles will require a population-based version of the model.
[I also still have to assemble some new data into a replacement for one of the figures, and to go back over the latest changes one more time before sending them to my coauthors on last time.]
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
From Valley Forge to the Lab: Parallels between Washington's Maneuvers and Drug Development3 weeks ago in The Curious Wavefunction
-
Political pollsters are pretending they know what's happening. They don't.3 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections5 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
Still (STILL!) working on the uptake sequence variation manuscript
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS