I bound competent cells (H. influenzae and B. subtilis, separately) onto cover slips in chambers, and then washed in medium containing genetically marked DNA. After 15 minutes at 37 °C I washed in some medium with DNase I and then medium containing 0.5% low-melt agarose, with and without either nalidixic acid (to select the H. influenzae nalR allele) or tryptophan (to select the B. subtilis trp+ allele). Then I sealed the chambers' ends with wax from a candle (clumsily) and incubated them overnight.
The results were a bit messy. The H. influenzae cells started out quite dense (1000-5000 per 40X field of view) and without nalidixic acid they grew into nice microcolonies. With nalidixic acid they instead formed filaments (i.e. grew without dividing, and then stopped growing). At the edges of the chamber some large and well-defined microcolonies were present, but these were absent from the central part of the chamber. So transformation is clearly happening, but I can't estimate a frequency. The distribution of the NalR microcolonies suggests that oxygen might affect resistance, but I don't know enough about how the drug acts (a gyrase inhibitor) to guess why that would be the case.
The B. subtilis results were worse. The chambers with and without tryptophan had similar numbers of cells. Both had substantially more cells than had originally been attached, so there must have been some growth. But there were no obvious microcolonies. I might have made an error with the medium. But many of the cells were moving around, so I suspect that I also need to use a higher concentration of low-melt agarose to block their strong motility.
On a separate topic, a reader suggested using polyethylene glycol (PEG) to block the poly-L-lysine coating and prevent beads from sticking to it once the cells had been bound. After checking that PEG isn't toxic to cells, I tried washing my chambers with a 1% solution of the PEG type we had on the shelf (PEG 3350, which I think is a moderate chain length for PEG), washing it out, and then washing in some beads and washing them out after 10 minutes. Result - no significant difference between PEG and no PEG in the numbers of beads bound to the coverslip. I could try a higher concentration of PEG, but maybe the problem is washing out the PEG before adding the beads. I'll try adding PEG to the beads as well as to the washing solution. If this does prevent beads sticking, I'll next need to test whether PEG inhibits transformation.
While I was at it I also tested whether the 16% glycerol that's mixed with the frozen competent cells inhibits cell binding to the coverslips. I had been conscientiously pelleting the thawed cells and resuspending them in glycerol-free medium before adding them to the chambers, but now I know that cells bind just fine in the presence of glycerol. The glycerol is subsequently washed out of the chamber along with the non-attached cells, so I won't bother with the centrifuging step any more.
And I tested alternatives to sealing the chamber ends with wax, which is difficult to apply and tends to form big lumps rather than a smooth layer. (I don't like the risk of getting wax on the microscope lens.) First I tried a better way of applying the melted wax - rather than using a glass Pasteur pipette with a rubber bulb, I tried using an old Pipetman p200 with a snipped-off tip. This gave better control, but the wax still formed a big lump when it met the glass. Parafilm didn't work - a film of liquid quickly seeped under the parafilm. Melting the parafilm with a heated spatula didn't help. I also tried using paint from a paint-Sharpie; this only sort-of worked, perhaps because it's a water-based paint. (But it was cool to look at the paint droplets under the microscope.)
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
-
Political pollsters are pretending they know what's happening. They don't.4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections6 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
Cells attached to glass slides are not only viable but transformable
2 comments:
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS
Subscribe to:
Post Comments (Atom)
What did the "no DNA" cells look like in chambers with the antibiotic?
ReplyDeleteI don't think I did this control... I'll go back and do the experiment again, but I'd like to sort out the other problems first.
ReplyDelete