It's pretty clear that the clumping is caused by the biotin-tagged DNA. Adding DNase I to the preps breaks up the clumps, and there are no big clumps in preps of washed beads (no DNA) or if the beads are incubated with DNA that hasn't been biotin-tagged. The likely cause is that, if the tagging reaction worked well, both ends of each DNA fragment should have biotin tags. Such fragments can then bind to two beads, crosslinking them, and may also create DNA loops that entrap other DNA fragments.
I can see several ways to reduce this problem, illustrated in the figure.
1. One strategy is to use a defined DNA substrate rather than restriction-digested chromosomal DNA, one that can be biotin-tagged at only one end. A 14 kb plasmid designed for such experiments is available, and the biophysics grad student who worked on this project modified added a H. influenzae uptake sequence to it. It's in our freezer. All I need to do is digest with XhoI, biotin-tag the ends, and then digest with EcoRI to snip off the tag at the USS end. I won't need to purify the long fragment, as the snipped-off bit shouldn't interfere with anything. The EcoRI site is only 6 bp from the Xho site; luckily the ever-useful New England Biolabs catalog tells me that EcoRI doesn't mind cutting very close to an end. Because this fragment contains only a single uptake sequence rather than the ~1 uptake sequence per kb of chromosomal DNA, it might not be as useful for the preliminary experiments whose goal is just to get cells to bind to DNA on beads and begin uptake.

3. The third strategy is technically simplest, although it's the last one I thought of. I've been incubating the DNA with the beads in a small volume. For most kinds of reactions, using a high concentration of reactants is good because it increases the frequency of interactions. But streptavidin-biotin interactions have such strong affinities that this may not be an issue, especially because I can let the reactions proceed for a long time. On the other hand, once a doubly tagged DNA fragment has bound a bead at one end, using a dilute mixture will increase the chance that the biotin at the fragment's other end will bind to the same bead before it encounters a different bead.
4. (not shown) As a stopgap solution I can take the bead+DNA preps that I have and let the big clumps settle out.
Alternatively, you could add soluble streptavidin.
ReplyDeleteI hadn't thought of adding soluble streptavidin to block additional binding. That would work if the unwanted binding of the other end to a second bead was occurring late in the incubation, but it would require delicate timing to not block the desired first binding.
ReplyDeleteUnder the very dilute conditions you proposed using, the first binding event should lead to rapid binding of the other biotin to the same bead. If you want doubly-anchored DNA fragments, that's great - but otherwise soluble streptavidin might be helpful.
ReplyDelete