So maybe the DprA and ComM proteins don't directly protect DNA from nucleases, at least not in Haemophilus. Maybe instead they do something (or two different somethings) that promote homologous recombination, and the recombination is just the normal consequence of not recombining.
But in S. pneumoniae, I think there's good evidence that DNA that can't recombine with the chromosome degrades faster in a dprA-knockout strain. Better check... OK, an excellent 2003 paper by Berge et al. showed that incoming plasmid DNA with no homology to the chromosome is rapidly degraded in both recA and dprA mutants. The degradation is faster than the normal kinetics of recombination in wildtype cells, so it isn't just a consequence of the lack of recombination.
Back to the roles of specific nucleases. Something certainly degrades the DNA, and the control transformations of our nuclease experiments confirm that it isn't ExoV or ExoI or RecJ, because each nuclease mutation reduces the transformation frequency. (We can't even claim originality on this conclusion, because the researchers who made the nuclease mutants also showed this.)
Why do I care what these two proteins do? Both have been interpreted as evidence that the selected function of DNA uptake is to generate recombinants. I think this is incorrect because of the larger picture view of selection for recombination, not because of any flaw in the experiments. The big question is, what do these proteins do for cells in the absence of DNA uptake.
To a first approximation, the dprA and comM mutants show normal viability and growth and sensitivity to UV. The E. coli DprA paper showed that E. coli DprA can partially complement the transformation defect of an H. influenzae knockout, which the authors interpreted as meaning that DprA's function in non-competent cells also contributes to transformation in cells that take up DNA.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
From Valley Forge to the Lab: Parallels between Washington's Maneuvers and Drug Development4 weeks ago in The Curious Wavefunction
-
Political pollsters are pretending they know what's happening. They don't.4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections5 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS