In addition to my GFAJ-1 arsenic experiments, I'm also doing work on our real research program, natural transformation in Haemophilus influenzae. We need to (yet again) revise our DNA uptake grant proposal for the Sept. 15 deadline, and I'm doing some work that will let us strengthen that proposal.
The previous version of the grant included a substantial section on making marked and unmarked knock-out mutations of all the competence genes, and one of the reviewers sensibly asked if we could also make point-mutation changes to these genes. This would indeed be very valuable, so we're trying to generate evidence that we can do this.
The biggest obstacle is not making the mutant versions of the genes (the RA can do that easily in E. coli), but identifying the rare H. influenzae cells that have integrated them into their chromosomes. We'd like to simply transform the mutated DNA fragments into competent cells, but this works very inefficiently when the DNA fragments are short. Unfortunately, short fragments work best for the mutagenesis steps.
My latest experiment tested the effect of fragment length on transformation efficiency I used a cloned DNA fragment containing the novR (novobiocin resistance) allele of the gyrB gene. This is a point mutation, in the middle of a 9.3 kb fragment. I did three test transformations, each using the same amount of the plasmid. Test 1 used plasmid DNA cut to release the 9.3 kb fragment intact. This gave a transformation frequency of 7 x 10^-3, about 10-fold higher than the control transformation using chromosomal DNA from a novR strain. Cutting the plasmid with restriction enzymes that gave a 4.8 kb novR fragment reduced the transformation frequency only slightly, to 4 x 10^-3, but cutting with enzymes that gave a 2.6 kb fragment reduced it 10,000-fold, to 4 x 10^-7.
Several factors complicate this experiment. I don't know the plasmid DNA concentration; I think it was about 100 ng/ml, which would be less than saturating. The plasmid insert contains several uptake sequences, but I don't know their distribution (I could dig this info out). The digest that gave the 4.8 kb fragment may not have been complete, in which case the true transformation frequency might be lower. The control transformation frequency was lower than I expected
We can conclude that our mutagenesis experiments should use fragments that are at least 5 kb long. If this gives a transformation frequency of only 4 x 10^-3 we'll have to do lots of screening (possible but tiresome), but the transformation frequency can probably be increased ten-fold by using more-competent cells and more DNA.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
From Valley Forge to the Lab: Parallels between Washington's Maneuvers and Drug Development4 weeks ago in The Curious Wavefunction
-
Political pollsters are pretending they know what's happening. They don't.4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections5 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS