What if we just plotted base composition as a function of USS or DUS number (really the number of perfect matches to the USS or DUS core). If some genes lack uptake sequences because they've only recently entered the genome (coming from a source genome with no uptake sequences), we predict that genes with aberrant base compositions will be preferentially found in the class with no uptake sequences.
I imagine a graph looking something like this. Each dot represents a gene. Almost all the genes have base compositions close to 38%; this gives far too many points to resolve so the number of points in this group is indicated by the pale blue circles. I could clarify this by writing the actual numbers in blue beside these circles.
The numbers below the 0, 1, etc. on the bottom axis would be the fraction of the genes in that group that had aberrant base compositions. If our hypothesis is correct that newly acquired genes tend to lack uptake sequences, I anticipate these fractions would be highest for genes with no uptake sequences.
Doing this analysis would be much simpler than one that incorporated BLAST search results. On the other hand, the BLAST searches are already done, so maybe we can do both. But probably we should do this first, just to see if there is support for our hypothesis. If there isn't we'll know not to waste time doing the fancier analyses. If there is, we should also do this using codon adaptation index instead of base composition. I found a web page that calculates this index, but only one gene at a time, and I think my collaborators could probably automate it quite easily. (Maybe codon adaptation index has been replaced by a better measure - I'd better do some searching.)
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
From Valley Forge to the Lab: Parallels between Washington's Maneuvers and Drug Development4 weeks ago in The Curious Wavefunction
-
Political pollsters are pretending they know what's happening. They don't.4 weeks ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections5 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
Not your typical science blog, but an 'open science' research blog. Watch me fumbling my way towards understanding how and why bacteria take up DNA, and getting distracted by other cool questions.
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS